203 research outputs found

    Development of white matter microstructure and executive functions during childhood and adolescence: a review of diffusion MRI studies

    Get PDF
    Diffusion magnetic resonance imaging (dMRI) provides indirect measures of white matter microstructure that can be used to make inferences about structural connectivity within the brain. Over the last decade, a growing literature of cross-sectional and longitudinal studies have documented relationships between dMRI indices and cognitive development. In this review, we provide a brief overview of dMRI methods and how they can be used to study white matter and connectivity and review the extant literature examining the links between dMRI indices and executive functions during development. We explore the links between white matter microstructure and specific executive functions: inhibition, working memory and cognitive shifting, as well as performance on complex executive function tasks. Concordance in findings across studies are highlighted, and potential explanations for discrepancies between results, together with challenges with using dMRI in child and adolescent populations, are discussed. Finally, we explore future directions that are necessary to better understand the links between child and adolescent development of structural connectivity of the brain and executive functions

    Diffusion MRI of white matter microstructure development in childhood and adolescence: Methods, challenges and progress

    Get PDF
    Diffusion magnetic resonance imaging (dMRI) continues to grow in popularity as a useful neuroimaging method to study brain development, and longitudinal studies that track the same individuals over time are emerging. Over the last decade, seminal work using dMRI has provided new insights into the development of brain white matter (WM) microstructure, connections and networks throughout childhood and adolescence. This review provides an introduction to dMRI, both diffusion tensor imaging (DTI) and other dMRI models, as well as common acquisition and analysis approaches. We highlight the difficulties associated with ascribing these imaging measurements and their changes over time to specific underlying cellular and molecular events. We also discuss selected methodological challenges that are of particular relevance for studies of development, including critical choices related to image acquisition, image analysis, quality control assessment, and the within-subject and longitudinal reliability of dMRI measurements. Next, we review the exciting progress in the characterization and understanding of brain development that has resulted from dMRI studies in childhood and adolescence, including brief overviews and discussions of studies focusing on sex and individual differences. Finally, we outline future directions that will be beneficial to the field

    Inter-individual variability in structural brain development from late childhood to young adulthood

    Get PDF
    A fundamental task in neuroscience is to characterize the brain's developmental course. While replicable group-level models of structural brain development from childhood to adulthood have recently been identified, we have yet to quantify and understand individual differences in structural brain development. The present study examined inter-individual variability and sex differences in changes in brain structure, as assessed by anatomical MRI, across ages 8.0-26.0 years in 269 participants (149 females) with three time points of data (807 scans), drawn from three longitudinal datasets collected in the Netherlands, Norway, and USA. We further investigated the relationship between overall brain size and developmental changes, as well as how females and males differed in change variability across development. There was considerable inter-individual variability in the magnitude of changes observed for all examined brain measures. The majority of individuals demonstrated decreases in total gray matter volume, cortex volume, mean cortical thickness, and white matter surface area in mid-adolescence, with more variability present during the transition into adolescence and the transition into early adulthood. While most individuals demonstrated increases in white matter volume in early adolescence, this shifted to a majority demonstrating stability starting in mid-to-late adolescence. We observed sex differences in these patterns, and also an association between the size of an individual's brain structure and the overall rate of change for the structure. The present study provides new insight as to the amount of individual variance in changes in structural morphometrics from late childhood to early adulthood in order to obtain a more nuanced picture of brain development. The observed individual-and sex-differences in brain changes also highlight the importance of further studying individual variation in developmental patterns in healthy, at-risk, and clinical populations.Pathways through Adolescenc

    Adolescent brain maturation and cortical folding: evidence for reductions in gyrification

    Get PDF
    Evidence from anatomical and functional imaging studies have highlighted major modifications of cortical circuits during adolescence. These include reductions of gray matter (GM), increases in the myelination of cortico-cortical connections and changes in the architecture of large-scale cortical networks. It is currently unclear, however, how the ongoing developmental processes impact upon the folding of the cerebral cortex and how changes in gyrification relate to maturation of GM/WM-volume, thickness and surface area. In the current study, we acquired high-resolution (3 Tesla) magnetic resonance imaging (MRI) data from 79 healthy subjects (34 males and 45 females) between the ages of 12 and 23 years and performed whole brain analysis of cortical folding patterns with the gyrification index (GI). In addition to GI-values, we obtained estimates of cortical thickness, surface area, GM and white matter (WM) volume which permitted correlations with changes in gyrification. Our data show pronounced and widespread reductions in GI-values during adolescence in several cortical regions which include precentral, temporal and frontal areas. Decreases in gyrification overlap only partially with changes in the thickness, volume and surface of GM and were characterized overall by a linear developmental trajectory. Our data suggest that the observed reductions in GI-values represent an additional, important modification of the cerebral cortex during late brain maturation which may be related to cognitive development

    Age-related changes in global motion coherence: conflicting haemodynamic and perceptual responses

    Get PDF
    Our aim was to use both behavioural and neuroimaging data to identify indicators of perceptual decline in motion processing. We employed a global motion coherence task and functional Near Infrared Spectroscopy (fNIRS). Healthy adults (n = 72, 18-85) were recruited into the following groups: young (n = 28, mean age = 28), middle-aged (n = 22, mean age = 50), and older adults (n = 23, mean age = 70). Participants were assessed on their motion coherence thresholds at 3 different speeds using a psychophysical design. As expected, we report age group differences in motion processing as demonstrated by higher motion coherence thresholds in older adults. Crucially, we add correlational data showing that global motion perception declines linearly as a function of age. The associated fNIRS recordings provide a clear physiological correlate of global motion perception. The crux of this study lies in the robust linear correlation between age and haemodynamic response for both measures of oxygenation. We hypothesise that there is an increase in neural recruitment, necessitating an increase in metabolic need and blood flow, which presents as a higher oxygenated haemoglobin response. We report age-related changes in motion perception with poorer behavioural performance (high motion coherence thresholds) associated with an increased haemodynamic response

    Multilab Direct Replication of Flavell, Beach, and Chinsky (1966): Spontaneous Verbal Rehearsal in a Memory Task as a Function of Age

    Get PDF
    Work by Flavell, Beach, and Chinsky indicated a change in the spontaneous production of overt verbalization behaviors when comparing young children (age 5) with older children (age 10). Despite the critical role that this evidence of a change in verbalization behaviors plays in modern theories of cognitive development and working memory, there has been only one other published near replication of this work. In this Registered Replication Report, we relied on researchers from 17 labs who contributed their results to a larger and more comprehensive sample of children. We assessed memory performance and the presence or absence of verbalization behaviors of young children at different ages and determined that the original pattern of findings was largely upheld: Older children were more likely to verbalize, and their memory spans improved. We confirmed that 5- and 6-year-old children who verbalized recalled more than children who did not verbalize. However, unlike Flavell et al., substantial proportions of our 5- and 6-year-old samples overtly verbalized at least sometimes during the picture memory task. In addition, continuous increase in overt verbalization from 7 to 10 years old was not consistently evident in our samples. These robust findings should be weighed when considering theories of cognitive development, particularly theories concerning when verbal rehearsal emerges and relations between speech and memory

    Brain structure across the lifespan : the influence of stress and mood

    Get PDF
    Normal brain aging is an inevitable and heterogeneous process characterized by a selective pattern of structural changes. Such heterogeneity arises as a consequence of cumulative effects over the lifespan, including stress and mood effects, which drive different micro- and macro-structural alterations in the brain. Investigating these differences in healthy age-related changes is a major challenge for the comprehension of the cognitive status. Herein we addressed the impact of normal aging, stress, mood, and their interplay in the brain gray and white matter (WM) structure. We showed the critical impact of age in the WM volume and how stress and mood influence brain volumetry across the lifespan. Moreover, we found a more profound effect of the interaction of aging/stress/mood on structures located in the left hemisphere. These findings help to clarify some divergent results associated with the aging decline and to enlighten the association between abnormal volumetric alterations and several states that may lead to psychiatric disorders.We are thankful to all study participants. This work was funded by the European Commission (FP7): "SwitchBox" (Contract HEALTH-F2-2010-259772) and co-financed by the Portuguese North Regional Operational Program (ON.2 - O Novo Norte) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER). Jose M. Soares, Paulo Marques, and Nadine C. Santos are supported by fellowships of the project "SwitchBox"; Ricardo Magalhaes is supported by a fellowship from the project FCTANR/NEU-OSD/0258/2012 funded by FCT/MEC (www.fct.pt) and by ON.2 - ONOVONORTE - North - Portugal Regional Operational Programme 2007/2013, of the National Strategic Reference Framework (NSRF) 2007/2013, through FEDER

    Elevated visual dependency in young adults after chemotherapy in childhood

    Get PDF
    Chemotherapy in childhood can result in long-term neurophysiological side-effects, which could extend to visual processing, specifically the degree to which a person relies on vision to determine vertical and horizontal (visual dependency). We investigated whether adults treated with chemotherapy in childhood experience elevated visual dependency compared to controls and whether any difference is associated with the age at which subjects were treated. Visual dependency was measured in 23 subjects (mean age 25.3 years) treated in childhood with chemotherapy (CTS) for malignant, solid, non-CNS tumors. We also stratified CTS into two groups: those treated before 12 years of age and those treated from 12 years of age and older. Results were compared to 25 healthy, age-matched controls. The subjective visual horizontal (SVH) and vertical (SVV) orientations was recorded by having subjects position an illuminated rod to their perceived horizontal and vertical with and without a surrounding frame tilted clockwise and counter-clockwise 20° from vertical. There was no significant difference in rod accuracy between any CTS groups and controls without a frame. However, when assessing visual dependency using a frame, CTS in general (p = 0.006) and especially CTS treated before 12 years of age (p = 0.001) tilted the rod significantly further in the direction of the frame compared to controls. Our findings suggest that chemotherapy treatment before 12 years of age is associated with elevated visual dependency compared to controls, implying a visual bias during spatial activities. Clinicians should be aware of symptoms such as visual vertigo in adults treated with chemotherapy in childhood

    Lexical access speed and the development of phonological recoding during immediate serial recall

    Full text link
    A recent Registered Replication Report (RRR) of the development of verbal rehearsal during serial recall revealed that children verbalized at younger ages than previously thought, but did not identify sources of individual differences. Here, we use mediation analysis to reanalyze data from the 934 children ranging from 5 to 10 years old from the RRR for that purpose. From ages 5 to 7, the time taken for a child to label pictures (i.e. isolated naming speed) predicted the child’s spontaneous use of labels during a visually presented serial reconstruction task, despite no need for spoken responses. For 6- and 7-year-olds, isolated naming speed also predicted recall. The degree to which verbalization mediated the relation between isolated naming speed and recall changed across development. All relations dissipated by age 10. The same general pattern was observed in an exploratory analysis of delayed recall for which greater demands are placed on rehearsal for item maintenance. Overall, our findings suggest that spontaneous phonological recoding during a standard short-term memory task emerges around age 5, increases in efficiency during the early elementary school years, and is sufficiently automatic by age 10 to support immediate serial recall in most children. Moreover, the findings highlight the need to distinguish between phonological recoding and rehearsal in developmental studies of short-term memory
    corecore